3D Bioplotter Research Papers

Displaying all papers by S. Frølich (2 results)

In situ loading and x-ray diffraction quantification of strains in hydroxyapatite particles within a 3D printed scaffold

Materialia 2021 Volume 18, Article 101174

A 3D printed scaffold consisting of a composite with very high volume fraction of particulate hydroxyapatite (hAp, 74 vol.%) and small volume fraction of poly-lactic-co-glycolic acid (26 vol.%) was loaded in compression, and the internal strains in the hAp phase were measured by high-energy x-ray diffraction. Diffraction patterns were recorded at multiple positions in the scaffold at cross-head displacements of 0, -0.52 and -0.62 mm (2.0 mm total scaffold height). The 00.2 and 21.0 hAp strains never exceeded 2 × 10−4, and most positions showed strains ≤ 1 × 10−4, which was the magnitude of the experimental uncertainty.

Diffraction tomography and Rietveld refinement of a hydroxyapatite bone phantom

Journal of Applied Crystallography 2016 Volume 49, Pages 103-109

A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hAp…

Hydroxyapatite PLLA